M1.		(a) enthalpy (or energy) to break (or dissociate) a bond;	1			
	averaged over different molecules (environments);					
	enthalpy (or heat energy) change when one mole of a compound; is formed from its elements; in their standard states;					
	(b) enthalpy change = Σ (bonds broken) – Σ (bonds formed) or cycle;					
		= 4 × 388 +163 + 2 × 146 + 4 × 463 – (944 + 8 × 463); (or similar)	1			
	= -789;					
		(+ 789 scores 1 only)	1			
	(c)	(i) zero;	1			
		(ii) $AH = \Sigma$ (enthalpies of formation of products) $-\Sigma$ (enthalpies of formation of reactants)	1			
		= 4 × -242-(75 + 2 × -133);	1			
		= -777;				
		(+ 777 scores one only)	1			
	(d)	mean bond enthalpies are not exact				

(d) mean bond enthalpies are not exact (or indication that actual values are different from real values)

1

M3. (a) Heat energy change (1) Not energy on its own

measured at constant pressure (1) Mark separately, ignore constant temperature statements

(b) (i) Enthalpy change when 1 mol of a substance (or compound / product) (1) is formed from its constituent elements (1) in their standard states (1) under standard conditions (1)

Mark separately

(ii) $2Na(s) + S(s) + 2O_2(g) \rightarrow Na_2SO_4(s)$ Balanced (1) State symbols (1), but only if all species are correct Allow $\frac{1}{8}S_8(s)$

5

2

(c) Enthalpy change is independent of reaction route (1) Penalise incorrect additional statements

1

(d)

 $-1356 + (2 \times 285.8) + (4 \times 393.5) + \Delta H_{f}C_{4}H_{4}O_{4} = 0$

ΔH_f = -789.6 kJ mol⁻¹

If answer is incorrect: Score +789.6 two marks Score (× 1); (× 2) and (× 4) for species - one mark If an incorrect negative answer given check for AE for loss of one mark

3

[11]

- M4. (a) They are elements (1) Ignore irrelevant comments
 - (b) Enthalpy <u>change</u> (1)

or heat energy change or heat change or ΔH or any named enthalpy change C.E. if change not mentioned

Independent of route (1)

OR depends on initial and final <u>states</u> Only give second mark if first mark awarded except allow if energy used instead of enthalpy

2

1

(c)	$\Delta H = \Sigma \Delta H_{f}^{\Phi}(\text{products}) - \Sigma \Delta H_{f}^{\Phi}(\text{reactants}) (1) (Or a cycle)$
	= $2 \times -242 + \frac{1}{2} \times -394 - (-365)$ (1) (also implies first mark)
	= -316 kJ mol⁻₁ (1)

```
Ignore no units penalise wrong units +316 scores 1/3
```

3

M5.		(a)	$\Delta H = \Sigma$ (bonds broken) – Σ (bonds formed) (or cycle)	1
			= +146 – 496/2 (or 2 × 463 + 146 –(2 × 463 + 496/2)	1
			= – 102 (kJ mol ⁻¹) (1) (accept no units, wrong units loses a mark; +102 scores (1) only)	1
	(b)	C(s	s) + $2H_2(g) \rightarrow CH_4(g)$ equation (1) Correct state symbols (1)	2
	(c)	(i)	Macromolecular (accept giant molecule or carbon has many (4) bonds)	1
		(ii)	$\Delta H = \Sigma \Delta H_{f}(\text{products}) - \Sigma \Delta H_{f}(\text{reactants}) \text{ (or cycle)}$	1
			= 715 + 4 × 218 – (–74.9)	1
			= 1662 (kJ mol ⁻¹) (accept no units, wrong units loses one mark, allow 1660 to 1663, –1662 scores one mark only)	1
		(iii)	1662/4 = 415.5 (mark is for divide by four, allow if answer to (c)(ii) is wrong)	1

[10]

 M6. (a) (i) enthalpy (or heat or heat energy) <u>change</u> when <u>1 mol</u> of a substance (1) (QL mark) is formed from its elements (1) <u>all</u> substances in their standard states (1) (or normal states at 298K, 100 kPa or std condits) not STP, NTP

3

4

(b) <u>enthalpy change</u> (or <u>enthalpy of reaction</u>) is independent of route (1)

 $\Delta H = \Sigma \Delta H_r^{\Phi}$ prods - $\Sigma \Delta H_r^{\Phi}$ reactants (or cycle) (1) minimum correct cycle is:

$$\frac{MgO + 2HC1}{Mg + Cl_2 + H_2 + \frac{1}{2}O_2}$$

$$\Delta H = -642 - 286 - (-602 + 2 \times -92) (1)$$

$$= -142 (kJ mol^{-1}) (1)$$
penalise this mark for wrong units
+142 scores 1 mark out of the last three

(c)
$$\Delta H = mcT(1)$$
 (or $mc\Delta T$)
= 50 × 4.2 × 32 = 6720 J = 6.72J (1)
mark is for 6720 J or 6.72 kJ

moles HCl = $\frac{\sqrt{01}}{1000} \times \text{conc} = \frac{50}{1000} \times 3$ (1)

= 0.15 **(1)**

if error here mark on conseq.

Therefore moles of MgO reacted = moles HCl/2 (1) (mark is for/2, CE if not/2) = 0.15/2 = 0.075

Therefore $\Delta H = 6.72/0.075$ (1) = -90 kJ (mol⁻¹) kJ must be given, allow 89 to 91 value (1) sign (1); this mark can be given despite CE for /2 Note various combinations of answers to part (c) score as follows:

-89 to -91 kJ (8) (or -89000 to 91000J) no units (7)
+89 to +91 kJ (7) (or + 89000 to +91000J) no units (6)
-44 to -46 kJ (5) (or -44000 to -46000J) no units (4) if units after 6.72 or 6720 (5)
+44 to +46 kJ (4) (or +44000 to + 46000) if no units and if no units after 6.72 or 6720 (3) otherwise check, could be (4) 8

[15]