M1. (a) enthalpy (or energy) to break (or dissociate) a bond;
averaged over different molecules (environments);
enthalpy (or heat energy) change when one mole of a compound;
is formed from its elements;
in their standard states;
(b) enthalpy change $=\Sigma$ (bonds broken) $-\Sigma$ (bonds formed) or cycle;
$=4 \times 388+163+2 \times 146+4 \times 463-(944+8 \times 463)$;
(or similar)
$=-789$;

$$
\text { (+ } 789 \text { scores } 1 \text { only) }
$$

(c) (i) zero;
(ii) $\quad A H=\Sigma$ (enthalpies of formation of products) $-\Sigma$ (enthalpies of formation of reactants)

$$
=4 \times-242-(75+2 \times-133) ;
$$

$$
=-777
$$

(+ 777 scores one only)
(d) mean bond enthalpies are not exact
(or indication that actual values are different from real values)

M2.C

M3. (a) Heat energy change (1)
Not energy on its own measured at constant pressure (1)

Mark separately, ignore constant temperature statements
(b) (i) Enthalpy change when 1 mol of a substance (or compound / product) (1) is formed from its constituent elements (1) in their standard states (1) under standard conditions (1)

Mark separately
(ii) $\quad 2 \mathrm{Na}(\mathrm{s})+\mathrm{S}(\mathrm{s})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$

Balanced (1) State symbols (1), but only if all species are correct
Allow ${ }^{\frac{1}{8}} \mathrm{~S}_{8}(\mathrm{~s})$
(c) Enthalpy change is independent of reaction route (1)

Penalise incorrect additional statements
(d)

M4. (a) They are elements (1)
Ignore irrelevant comments
(b) Enthalpy change (1)
or heat energy change or heat change or ΔH or any named enthalpy change C.E. if change not mentioned

Independent of route (1)
OR depends on initial and final states
Only give second mark if first mark awarded except allow if energy used instead of enthalpy
(c) $\Delta \mathrm{H}=\Sigma \Delta \mathrm{H}_{\mathrm{f}}^{\Theta}$ (products) $-\Sigma \Delta \mathrm{H}_{\mathrm{f}}^{\Theta}$ (reactants) (1) (Or a cycle) $=2 \times-242+1 / 2 \times-394-(-365)$ (1) (also implies first mark) $=-316 \mathrm{~kJ} \mathrm{~mol}^{-1}(1)$

Ignore no units penalise wrong units +316 scores 1/3

M5. (a) $\Delta H=\Sigma$ (bonds broken) $-\Sigma$ (bonds formed) (or cycle)

$$
=+146-496 / 2(\text { or } 2 \times 463+146-(2 \times 463+496 / 2)
$$

(accept no units, wrong units loses a mark; +102 scores (1) only)

1

$$
=-102\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(1)
$$

(b) $\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$ equation (1) Correct state symbols (1)
(c) (i) Macromolecular (accept giant molecule or carbon has many (4) bonds)
(ii) $\Delta H=\Sigma \Delta H_{f}$ (products) $-\Sigma \Delta H_{f}($ reactants $)$ (or cycle)

$$
=715+4 \times 218-(-74.9)
$$

$=1662\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
(accept no units, wrong units loses one mark, allow 1660 to 1663, -1662 scores one mark only)
(iii) $\quad 1662 / 4=415.5$
(mark is for divide by four, allow if answer to (c)(ii) is wrong)

M6. (a) (i) enthalpy (or heat or heat energy) change when 1 mol of a substance (1) (QL mark) is formed from its elements (1) all substances in their standard states (1) (or normal states at 298 K , 100 kPa or std condits) not STP, NTP
(b) enthalpy change (or enthalpy of reaction) is independent of route (1)
$\Delta H=\Sigma \Delta \mathrm{H}_{\mathrm{f}}^{\Theta}$ prods $-\Sigma \Delta \mathrm{H}_{\mathrm{f}}^{\ominus}$ reactants (or cycle) (1) minimum correct cycle is:

$$
\Delta H=-642-286-(-602+2 \times-92)(1)
$$

$$
=-142\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(1)
$$

penalise this mark for wrong units
+142 scores 1 mark out of the last three
(c) $\quad \Delta \mathrm{H}=m c T$ (1) $\quad($ or $m c \Delta T)$

$$
=50 \times 4.2 \times 32=6720 \mathrm{~J}=6.72 \mathrm{~J}(1)
$$

mark is for 6720 J or 6.72 kJ
moles $\mathrm{HCl}=\frac{\mathrm{vol}}{1000} \times$ conc $=\frac{50}{1000} \times 3(1)$
$=0.15$ (1)
if error here mark on conseq.
Therefore moles of MgO reacted $=$ moles $\mathrm{HCl} / 2$ (1)
(mark is for/2, CE if not/2)
$=0.15 / 2=0.075$
Therefore $\Delta H=6.72 / 0.075$ (1)
$=-90 \mathrm{~kJ}\left(\mathrm{~mol}^{-1}\right)$
kJ must be given, allow 89 to 91
value (1)
sign (1); this mark can be given despite CE for $/ 2$

Note various combinations of answers to part (c) score as follows:

```
-89 to -91 kJ (8) (or -89000 to 91000J)
    no units (7)
+89 to +91 kJ (7) (or + 89000 to +91000J)
    no units (6)
-44 to -46 kJ (5) (or -44000 to -46000J)
    no units (4) if units after 6.72 or 6720 (5)
+44 to +46 kJ (4) (or +44000 to + 46000)
    if no units and
    if no units after 6.72 or 6720 (3)
    otherwise check, could be (4)
```

